MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. EN 2.4608 Nickel

2017 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 12 to 18
34
Fatigue Strength, MPa 90 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 130 to 260
410
Tensile Strength: Ultimate (UTS), MPa 190 to 430
620
Tensile Strength: Yield (Proof), MPa 76 to 260
270

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
170
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 17 to 40
20
Strength to Weight: Bending, points 24 to 42
19
Thermal Diffusivity, mm2/s 56
2.9
Thermal Shock Resistance, points 7.9 to 18
16

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.1
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
11.4 to 23.8
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0