MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. EN AC-46200 Aluminum

Both 2017 aluminum and EN AC-46200 aluminum are aluminum alloys. They have a moderately high 91% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
73
Elongation at Break, % 12 to 18
1.1
Fatigue Strength, MPa 90 to 130
87
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 190 to 430
210
Tensile Strength: Yield (Proof), MPa 76 to 260
130

Thermal Properties

Latent Heat of Fusion, J/g 390
510
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
620
Melting Onset (Solidus), °C 510
540
Specific Heat Capacity, J/kg-K 880
880
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
2.8
Embodied Carbon, kg CO2/kg material 8.0
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 17 to 40
21
Strength to Weight: Bending, points 24 to 42
28
Thermal Diffusivity, mm2/s 56
44
Thermal Shock Resistance, points 7.9 to 18
9.5

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
82.6 to 90.3
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
2.0 to 3.5
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.4 to 0.8
0.050 to 0.55
Manganese (Mn), % 0.4 to 1.0
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0.2 to 0.8
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0 to 0.25
Zinc (Zn), % 0 to 0.25
0 to 1.2
Residuals, % 0
0 to 0.25