MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. EN AC-51200 Aluminum

Both 2017 aluminum and EN AC-51200 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
67
Elongation at Break, % 12 to 18
1.1
Fatigue Strength, MPa 90 to 130
100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 190 to 430
220
Tensile Strength: Yield (Proof), MPa 76 to 260
150

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 880
910
Thermal Conductivity, W/m-K 150
92
Thermal Expansion, µm/m-K 24
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
22
Electrical Conductivity: Equal Weight (Specific), % IACS 110
74

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.0
9.6
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
51
Strength to Weight: Axial, points 17 to 40
24
Strength to Weight: Bending, points 24 to 42
31
Thermal Diffusivity, mm2/s 56
39
Thermal Shock Resistance, points 7.9 to 18
10

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
84.5 to 92
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.4 to 0.8
8.0 to 10.5
Manganese (Mn), % 0.4 to 1.0
0 to 0.55
Nickel (Ni), % 0
0 to 0.1
Silicon (Si), % 0.2 to 0.8
0 to 2.5
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15