MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. CC482K Bronze

2017 aluminum belongs to the aluminum alloys classification, while CC482K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 12 to 18
5.6
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 190 to 430
300
Tensile Strength: Yield (Proof), MPa 76 to 260
160

Thermal Properties

Latent Heat of Fusion, J/g 390
190
Maximum Temperature: Mechanical, °C 190
160
Melting Completion (Liquidus), °C 640
980
Melting Onset (Solidus), °C 510
860
Specific Heat Capacity, J/kg-K 880
360
Thermal Conductivity, W/m-K 150
64
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
3.8
Embodied Energy, MJ/kg 150
62
Embodied Water, L/kg 1140
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
14
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
120
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 17 to 40
9.5
Strength to Weight: Bending, points 24 to 42
11
Thermal Diffusivity, mm2/s 56
20
Thermal Shock Resistance, points 7.9 to 18
11

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
83.5 to 87
Iron (Fe), % 0 to 0.7
0 to 0.2
Lead (Pb), % 0
0.7 to 2.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0
0 to 0.4
Silicon (Si), % 0.2 to 0.8
0 to 0.010
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
10.5 to 12.5
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 2.0
Residuals, % 0 to 0.15
0