MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. C19025 Copper

2017 aluminum belongs to the aluminum alloys classification, while C19025 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is C19025 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 12 to 18
8.0 to 17
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Shear Strength, MPa 130 to 260
300 to 360
Tensile Strength: Ultimate (UTS), MPa 190 to 430
480 to 620

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 510
1020
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
40
Electrical Conductivity: Equal Weight (Specific), % IACS 110
40

Otherwise Unclassified Properties

Base Metal Price, % relative 10
31
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.0
2.8
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1140
320

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 17 to 40
15 to 19
Strength to Weight: Bending, points 24 to 42
15 to 18
Thermal Diffusivity, mm2/s 56
47
Thermal Shock Resistance, points 7.9 to 18
17 to 22

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
97.1 to 98.5
Iron (Fe), % 0 to 0.7
0
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0
Nickel (Ni), % 0
0.8 to 1.2
Phosphorus (P), % 0
0.030 to 0.070
Silicon (Si), % 0.2 to 0.8
0
Tin (Sn), % 0
0.7 to 1.1
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.3