MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. C95400 Bronze

2017 aluminum belongs to the aluminum alloys classification, while C95400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 12 to 18
8.1 to 16
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
43
Tensile Strength: Ultimate (UTS), MPa 190 to 430
600 to 710
Tensile Strength: Yield (Proof), MPa 76 to 260
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 190
230
Melting Completion (Liquidus), °C 640
1040
Melting Onset (Solidus), °C 510
1030
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 150
59
Thermal Expansion, µm/m-K 24
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 38
13
Electrical Conductivity: Equal Weight (Specific), % IACS 110
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
27
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.0
3.2
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
250 to 560
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 17 to 40
20 to 24
Strength to Weight: Bending, points 24 to 42
19 to 22
Thermal Diffusivity, mm2/s 56
16
Thermal Shock Resistance, points 7.9 to 18
21 to 25

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
10 to 11.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
83 to 87
Iron (Fe), % 0 to 0.7
3.0 to 5.0
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Nickel (Ni), % 0
0 to 1.5
Silicon (Si), % 0.2 to 0.8
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0
0 to 0.5