MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. N06058 Nickel

2017 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 12 to 18
45
Fatigue Strength, MPa 90 to 130
350
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
86
Shear Strength, MPa 130 to 260
600
Tensile Strength: Ultimate (UTS), MPa 190 to 430
860
Tensile Strength: Yield (Proof), MPa 76 to 260
410

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1540
Melting Onset (Solidus), °C 510
1490
Specific Heat Capacity, J/kg-K 880
420
Thermal Conductivity, W/m-K 150
9.8
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.0
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
320
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 17 to 40
27
Strength to Weight: Bending, points 24 to 42
23
Thermal Diffusivity, mm2/s 56
2.6
Thermal Shock Resistance, points 7.9 to 18
23

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.1
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 3.5 to 4.5
0 to 0.5
Iron (Fe), % 0 to 0.7
0 to 1.5
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.8
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0