MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. N06210 Nickel

2017 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 12 to 18
51
Fatigue Strength, MPa 90 to 130
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
85
Shear Strength, MPa 130 to 260
560
Tensile Strength: Ultimate (UTS), MPa 190 to 430
780
Tensile Strength: Yield (Proof), MPa 76 to 260
350

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 190
980
Melting Completion (Liquidus), °C 640
1570
Melting Onset (Solidus), °C 510
1510
Specific Heat Capacity, J/kg-K 880
420
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 10
85
Density, g/cm3 3.0
9.0
Embodied Carbon, kg CO2/kg material 8.0
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
320
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
22
Strength to Weight: Axial, points 17 to 40
24
Strength to Weight: Bending, points 24 to 42
21
Thermal Shock Resistance, points 7.9 to 18
22

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
0 to 1.0
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.8
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0