MakeItFrom.com
Menu (ESC)

2017 Aluminum vs. N06255 Nickel

2017 aluminum belongs to the aluminum alloys classification, while N06255 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017 aluminum and the bottom bar is N06255 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 12 to 18
45
Fatigue Strength, MPa 90 to 130
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 130 to 260
460
Tensile Strength: Ultimate (UTS), MPa 190 to 430
660
Tensile Strength: Yield (Proof), MPa 76 to 260
250

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 190
1000
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.0
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 66
230
Resilience: Unit (Modulus of Resilience), kJ/m3 41 to 470
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 17 to 40
22
Strength to Weight: Bending, points 24 to 42
20
Thermal Shock Resistance, points 7.9 to 18
17

Alloy Composition

Aluminum (Al), % 91.6 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
23 to 26
Copper (Cu), % 3.5 to 4.5
0 to 1.2
Iron (Fe), % 0 to 0.7
6.0 to 24
Magnesium (Mg), % 0.4 to 0.8
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 9.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0 to 0.69
Tungsten (W), % 0
0 to 3.0
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0