MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN 1.1133 Steel

2017A aluminum belongs to the aluminum alloys classification, while EN 1.1133 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN 1.1133 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.2 to 14
19 to 24
Fatigue Strength, MPa 92 to 130
230 to 310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 120 to 270
370 to 380
Tensile Strength: Ultimate (UTS), MPa 200 to 460
580 to 620
Tensile Strength: Yield (Proof), MPa 110 to 290
320 to 460

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
49
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1140
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
270 to 550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 42
21 to 22
Strength to Weight: Bending, points 26 to 44
20 to 21
Thermal Diffusivity, mm2/s 56
13
Thermal Shock Resistance, points 8.9 to 20
18 to 19

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.1
0 to 0.4
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
96.9 to 98.8
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.8
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0