MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN 1.4961 Stainless Steel

2017A aluminum belongs to the aluminum alloys classification, while EN 1.4961 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN 1.4961 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.2 to 14
39
Fatigue Strength, MPa 92 to 130
190
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 120 to 270
420
Tensile Strength: Ultimate (UTS), MPa 200 to 460
610
Tensile Strength: Yield (Proof), MPa 110 to 290
220

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 220
890
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
21
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.0
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1140
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
190
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 42
22
Strength to Weight: Bending, points 26 to 44
20
Thermal Diffusivity, mm2/s 56
4.3
Thermal Shock Resistance, points 8.9 to 20
14

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0 to 0.1
15 to 17
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
65.6 to 72.3
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 1.5
Nickel (Ni), % 0
12 to 14
Niobium (Nb), % 0
0.4 to 1.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.2 to 0.8
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0