MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN 1.6570 Steel

2017A aluminum belongs to the aluminum alloys classification, while EN 1.6570 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN 1.6570 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.2 to 14
11 to 17
Fatigue Strength, MPa 92 to 130
500 to 660
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 200 to 460
910 to 1130
Tensile Strength: Yield (Proof), MPa 110 to 290
760 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
440
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 100
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.9
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.2
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1140
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
1520 to 3010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 42
32 to 40
Strength to Weight: Bending, points 26 to 44
27 to 31
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 8.9 to 20
27 to 33

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0
Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0 to 0.1
1.0 to 1.4
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
94 to 96.2
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0
1.6 to 2.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0.2 to 0.8
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0

Comparable Variants