MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN 2.4668 Nickel

2017A aluminum belongs to the aluminum alloys classification, while EN 2.4668 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN 2.4668 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 2.2 to 14
14
Fatigue Strength, MPa 92 to 130
590
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Shear Strength, MPa 120 to 270
840
Tensile Strength: Ultimate (UTS), MPa 200 to 460
1390
Tensile Strength: Yield (Proof), MPa 110 to 290
1160

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 3.0
8.3
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1140
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
180
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
3490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 19 to 42
46
Strength to Weight: Bending, points 26 to 44
33
Thermal Diffusivity, mm2/s 56
3.5
Thermal Shock Resistance, points 8.9 to 20
40

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0.3 to 0.7
Boron (B), % 0
0.0020 to 0.0060
Carbon (C), % 0
0.020 to 0.080
Chromium (Cr), % 0 to 0.1
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.5 to 4.5
0 to 0.3
Iron (Fe), % 0 to 0.7
11.2 to 24.6
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 0
50 to 55
Niobium (Nb), % 0
4.7 to 5.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.8
0 to 0.35
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.6 to 1.2
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0