MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. EN AC-43500 Aluminum

Both 2017A aluminum and EN AC-43500 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 2.2 to 14
4.5 to 13
Fatigue Strength, MPa 92 to 130
62 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 200 to 460
220 to 300
Tensile Strength: Yield (Proof), MPa 110 to 290
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 390
550
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 650
600
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 150
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
38
Electrical Conductivity: Equal Weight (Specific), % IACS 100
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.2
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
130 to 200
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 46
54
Strength to Weight: Axial, points 19 to 42
24 to 33
Strength to Weight: Bending, points 26 to 44
32 to 39
Thermal Diffusivity, mm2/s 56
60
Thermal Shock Resistance, points 8.9 to 20
10 to 14

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
86.4 to 90.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0 to 0.050
Iron (Fe), % 0 to 0.7
0 to 0.25
Magnesium (Mg), % 0.4 to 1.0
0.1 to 0.6
Manganese (Mn), % 0.4 to 1.0
0.4 to 0.8
Silicon (Si), % 0.2 to 0.8
9.0 to 11.5
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.070
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.15