MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. N06035 Nickel

2017A aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 2.2 to 14
34
Fatigue Strength, MPa 92 to 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
84
Shear Strength, MPa 120 to 270
440
Tensile Strength: Ultimate (UTS), MPa 200 to 460
660
Tensile Strength: Yield (Proof), MPa 110 to 290
270

Thermal Properties

Latent Heat of Fusion, J/g 390
340
Maximum Temperature: Mechanical, °C 220
1030
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 11
60
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.2
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
180
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 19 to 42
22
Strength to Weight: Bending, points 26 to 44
20
Thermal Shock Resistance, points 8.9 to 20
17

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.5 to 4.5
0 to 0.3
Iron (Fe), % 0 to 0.7
0 to 2.0
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.8
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0