MakeItFrom.com
Menu (ESC)

2017A Aluminum vs. S31655 Stainless Steel

2017A aluminum belongs to the aluminum alloys classification, while S31655 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A aluminum and the bottom bar is S31655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 2.2 to 14
39
Fatigue Strength, MPa 92 to 130
300
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 120 to 270
490
Tensile Strength: Ultimate (UTS), MPa 200 to 460
710
Tensile Strength: Yield (Proof), MPa 110 to 290
350

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 220
1010
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 100
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
17
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.3
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.7 to 53
230
Resilience: Unit (Modulus of Resilience), kJ/m3 90 to 570
310
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19 to 42
25
Strength to Weight: Bending, points 26 to 44
23
Thermal Diffusivity, mm2/s 56
4.0
Thermal Shock Resistance, points 8.9 to 20
16

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Copper (Cu), % 3.5 to 4.5
0 to 1.0
Iron (Fe), % 0 to 0.7
63.2 to 71.9
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
0.5 to 1.5
Nickel (Ni), % 0
8.0 to 9.5
Nitrogen (N), % 0
0.14 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.8
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0