MakeItFrom.com
Menu (ESC)

2017A-O Aluminum vs. EN 1.7366 +A Steel

2017A-O aluminum belongs to the aluminum alloys classification, while EN 1.7366 +A steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2017A-O aluminum and the bottom bar is EN 1.7366 +A steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
140
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 14
19
Fatigue Strength, MPa 120
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 120
290
Tensile Strength: Ultimate (UTS), MPa 200
460
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 220
510
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.3
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1140
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25
74
Resilience: Unit (Modulus of Resilience), kJ/m3 100
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 56
11
Thermal Shock Resistance, points 8.9
13

Alloy Composition

Aluminum (Al), % 91.3 to 95.5
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.1
4.0 to 6.0
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 0.7
91.9 to 95.3
Magnesium (Mg), % 0.4 to 1.0
0
Manganese (Mn), % 0.4 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.8
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0