MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. 358.0 Aluminum

Both 2018 aluminum and 358.0 aluminum are aluminum alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 9.6
3.5 to 6.0
Fatigue Strength, MPa 120
100 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 270
300 to 320
Tensile Strength: Ultimate (UTS), MPa 420
350 to 370
Tensile Strength: Yield (Proof), MPa 310
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 390
520
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 510
560
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.1
8.7
Embodied Energy, MJ/kg 150
160
Embodied Water, L/kg 1130
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 670
590 to 710
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 38
37 to 39
Strength to Weight: Bending, points 41
42 to 44
Thermal Diffusivity, mm2/s 57
63
Thermal Shock Resistance, points 19
16 to 17

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Chromium (Cr), % 0 to 0.1
0 to 0.2
Copper (Cu), % 3.5 to 4.5
0 to 0.2
Iron (Fe), % 0 to 1.0
0 to 0.3
Magnesium (Mg), % 0.45 to 0.9
0.4 to 0.6
Manganese (Mn), % 0 to 0.2
0 to 0.2
Nickel (Ni), % 1.7 to 2.3
0
Silicon (Si), % 0 to 0.9
7.6 to 8.6
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.2
Residuals, % 0
0 to 0.15