MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. ASTM A182 Grade F122

2018 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F122 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
220
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
23
Fatigue Strength, MPa 120
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 270
450
Tensile Strength: Ultimate (UTS), MPa 420
710
Tensile Strength: Yield (Proof), MPa 310
450

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 640
1490
Melting Onset (Solidus), °C 510
1440
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
24
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
10
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.1
3.0
Embodied Energy, MJ/kg 150
44
Embodied Water, L/kg 1130
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
140
Resilience: Unit (Modulus of Resilience), kJ/m3 670
520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 41
22
Thermal Diffusivity, mm2/s 57
6.4
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.070 to 0.14
Chromium (Cr), % 0 to 0.1
10 to 11.5
Copper (Cu), % 3.5 to 4.5
0.3 to 1.7
Iron (Fe), % 0 to 1.0
81.3 to 87.7
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.7
Molybdenum (Mo), % 0
0.25 to 0.6
Nickel (Ni), % 1.7 to 2.3
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.9
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0