MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. ASTM A182 Grade F22V

2018 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F22V belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
21
Fatigue Strength, MPa 120
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 270
420
Tensile Strength: Ultimate (UTS), MPa 420
670
Tensile Strength: Yield (Proof), MPa 310
460

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
460
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
4.2
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1130
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
120
Resilience: Unit (Modulus of Resilience), kJ/m3 670
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 41
22
Thermal Diffusivity, mm2/s 57
11
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0
Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0
0.11 to 0.15
Chromium (Cr), % 0 to 0.1
2.0 to 2.5
Copper (Cu), % 3.5 to 4.5
0 to 0.2
Iron (Fe), % 0 to 1.0
94.6 to 96.4
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.7 to 2.3
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.9
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0