MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. ASTM A369 Grade FP91

2018 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP91 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is ASTM A369 grade FP91.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
19
Fatigue Strength, MPa 120
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 420
670
Tensile Strength: Yield (Proof), MPa 310
460

Thermal Properties

Latent Heat of Fusion, J/g 390
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.6
Embodied Energy, MJ/kg 150
37
Embodied Water, L/kg 1130
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
110
Resilience: Unit (Modulus of Resilience), kJ/m3 670
560
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 38
24
Strength to Weight: Bending, points 41
22
Thermal Diffusivity, mm2/s 57
6.9
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0 to 0.020
Carbon (C), % 0
0.080 to 0.12
Chromium (Cr), % 0 to 0.1
8.0 to 9.5
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
87.3 to 90.3
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 1.7 to 2.3
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.9
0.2 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.15
0