MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. EN 1.0488 Steel

2018 aluminum belongs to the aluminum alloys classification, while EN 1.0488 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
130
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
27
Fatigue Strength, MPa 120
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 270
280
Tensile Strength: Ultimate (UTS), MPa 420
440
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
49
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1130
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
100
Resilience: Unit (Modulus of Resilience), kJ/m3 670
200
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
15
Strength to Weight: Bending, points 41
16
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 19
14

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0.020 to 0.024
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.1
0 to 0.3
Copper (Cu), % 3.5 to 4.5
0 to 0.3
Iron (Fe), % 0 to 1.0
96.6 to 99.38
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 1.7 to 2.3
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.9
0 to 0.4
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0