MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. EN 1.1127 Steel

2018 aluminum belongs to the aluminum alloys classification, while EN 1.1127 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is EN 1.1127 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
190 to 230
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
14 to 25
Fatigue Strength, MPa 120
280 to 370
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 270
420 to 480
Tensile Strength: Ultimate (UTS), MPa 420
660 to 790
Tensile Strength: Yield (Proof), MPa 310
410 to 580

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
49
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1130
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
90 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 670
440 to 880
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
23 to 28
Strength to Weight: Bending, points 41
22 to 24
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 19
21 to 25

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0
Carbon (C), % 0
0.34 to 0.42
Chromium (Cr), % 0 to 0.1
0 to 0.4
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
96.6 to 98.1
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
1.4 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 1.7 to 2.3
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.9
0.15 to 0.35
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0