MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. EN 1.5680 Steel

2018 aluminum belongs to the aluminum alloys classification, while EN 1.5680 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
190
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
23
Fatigue Strength, MPa 120
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 270
390
Tensile Strength: Ultimate (UTS), MPa 420
620
Tensile Strength: Yield (Proof), MPa 310
440

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
5.0
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.9
Embodied Energy, MJ/kg 150
26
Embodied Water, L/kg 1130
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
130
Resilience: Unit (Modulus of Resilience), kJ/m3 670
510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 41
20
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 19
18

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
93.4 to 95
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.8
Nickel (Ni), % 1.7 to 2.3
4.8 to 5.3
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.9
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0