MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. EN 1.6771 Steel

2018 aluminum belongs to the aluminum alloys classification, while EN 1.6771 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is EN 1.6771 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
280 to 350
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 9.6
8.0 to 8.7
Fatigue Strength, MPa 120
440 to 680
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 420
930 to 1180
Tensile Strength: Yield (Proof), MPa 310
740 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 220
440
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
46
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 11
5.0
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.9
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1130
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
75 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 670
1460 to 3450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 38
33 to 41
Strength to Weight: Bending, points 41
27 to 31
Thermal Diffusivity, mm2/s 57
13
Thermal Shock Resistance, points 19
27 to 35

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0
Carbon (C), % 0
0.27 to 0.33
Chromium (Cr), % 0 to 0.1
0.8 to 1.2
Copper (Cu), % 3.5 to 4.5
0
Iron (Fe), % 0 to 1.0
92.2 to 95
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 1.7 to 2.3
3.0 to 4.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.9
0 to 0.6
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0