MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. EN 2.4663 Nickel

2018 aluminum belongs to the aluminum alloys classification, while EN 2.4663 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is EN 2.4663 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 9.6
40
Fatigue Strength, MPa 120
250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
81
Shear Strength, MPa 270
540
Tensile Strength: Ultimate (UTS), MPa 420
780
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 220
1010
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 510
1380
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
75
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.1
11
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
250
Resilience: Unit (Modulus of Resilience), kJ/m3 670
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 38
25
Strength to Weight: Bending, points 41
22
Thermal Diffusivity, mm2/s 57
3.5
Thermal Shock Resistance, points 19
22

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0.7 to 1.4
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
20 to 23
Cobalt (Co), % 0
11 to 14
Copper (Cu), % 3.5 to 4.5
0 to 0.5
Iron (Fe), % 0 to 1.0
0 to 2.0
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0 to 0.2
Molybdenum (Mo), % 0
8.5 to 10
Nickel (Ni), % 1.7 to 2.3
48 to 59.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.9
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.6
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0