MakeItFrom.com
Menu (ESC)

2018 Aluminum vs. N06985 Nickel

2018 aluminum belongs to the aluminum alloys classification, while N06985 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2018 aluminum and the bottom bar is N06985 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 9.6
45
Fatigue Strength, MPa 120
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
80
Shear Strength, MPa 270
480
Tensile Strength: Ultimate (UTS), MPa 420
690
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 220
990
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 510
1260
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
10
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
55
Density, g/cm3 3.1
8.4
Embodied Carbon, kg CO2/kg material 8.1
8.8
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
250
Resilience: Unit (Modulus of Resilience), kJ/m3 670
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 38
23
Strength to Weight: Bending, points 41
21
Thermal Diffusivity, mm2/s 57
2.6
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 89.7 to 94.4
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
21 to 23.5
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 3.5 to 4.5
1.5 to 2.5
Iron (Fe), % 0 to 1.0
18 to 21
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 1.7 to 2.3
35.9 to 53.5
Niobium (Nb), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.5
Zinc (Zn), % 0 to 0.25
0
Residuals, % 0 to 0.15
0