MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. 360.0 Aluminum

Both 2024 aluminum and 360.0 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 4.0 to 16
2.5
Fatigue Strength, MPa 90 to 180
140
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 130 to 320
190
Tensile Strength: Ultimate (UTS), MPa 200 to 540
300
Tensile Strength: Yield (Proof), MPa 100 to 490
170

Thermal Properties

Latent Heat of Fusion, J/g 390
530
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
590
Melting Onset (Solidus), °C 500
570
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
34
Electrical Conductivity: Equal Weight (Specific), % IACS 90
110

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
53
Strength to Weight: Axial, points 18 to 50
32
Strength to Weight: Bending, points 25 to 49
38
Thermal Diffusivity, mm2/s 46
55
Thermal Shock Resistance, points 8.6 to 24
14

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
85.1 to 90.6
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
0 to 0.6
Iron (Fe), % 0 to 0.5
0 to 2.0
Magnesium (Mg), % 1.2 to 1.8
0.4 to 0.6
Manganese (Mn), % 0.3 to 0.9
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Silicon (Si), % 0 to 0.5
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.25