MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. 5050 Aluminum

Both 2024 aluminum and 5050 aluminum are aluminum alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is 5050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
68
Elongation at Break, % 4.0 to 16
1.7 to 22
Fatigue Strength, MPa 90 to 180
45 to 100
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 130 to 320
91 to 140
Tensile Strength: Ultimate (UTS), MPa 200 to 540
140 to 250
Tensile Strength: Yield (Proof), MPa 100 to 490
50 to 210

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 500
630
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
190
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
50
Electrical Conductivity: Equal Weight (Specific), % IACS 90
170

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Calomel Potential, mV -600
-760
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
4.1 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
18 to 330
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 18 to 50
15 to 26
Strength to Weight: Bending, points 25 to 49
22 to 33
Thermal Diffusivity, mm2/s 46
79
Thermal Shock Resistance, points 8.6 to 24
6.3 to 11

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
96.3 to 98.9
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 3.8 to 4.9
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.7
Magnesium (Mg), % 1.2 to 1.8
1.1 to 1.8
Manganese (Mn), % 0.3 to 0.9
0 to 0.1
Silicon (Si), % 0 to 0.5
0 to 0.4
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.25
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants