MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. ACI-ASTM CA6N Steel

2024 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 16
17
Fatigue Strength, MPa 90 to 180
640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200 to 540
1080
Tensile Strength: Yield (Proof), MPa 100 to 490
1060

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 200
740
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 23
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 90
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.5
Embodied Energy, MJ/kg 150
35
Embodied Water, L/kg 1140
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
180
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
2900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 50
38
Strength to Weight: Bending, points 25 to 49
30
Thermal Diffusivity, mm2/s 46
6.1
Thermal Shock Resistance, points 8.6 to 24
40

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
10.5 to 12.5
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
77.9 to 83.5
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0