MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. ACI-ASTM CF3MN Steel

2024 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CF3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is ACI-ASTM CF3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 16
39
Fatigue Strength, MPa 90 to 180
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 200 to 540
580
Tensile Strength: Yield (Proof), MPa 100 to 490
290

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 500
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
19
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
190
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 50
20
Strength to Weight: Bending, points 25 to 49
20
Thermal Diffusivity, mm2/s 46
4.1
Thermal Shock Resistance, points 8.6 to 24
13

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
17 to 22
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
58.7 to 71.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
9.0 to 13
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0