MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. AISI 405 Stainless Steel

2024 aluminum belongs to the aluminum alloys classification, while AISI 405 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is AISI 405 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 16
22
Fatigue Strength, MPa 90 to 180
130
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130 to 320
300
Tensile Strength: Ultimate (UTS), MPa 200 to 540
470
Tensile Strength: Yield (Proof), MPa 100 to 490
200

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 200
820
Melting Completion (Liquidus), °C 640
1530
Melting Onset (Solidus), °C 500
1480
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 120
30
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 90
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
7.0
Calomel Potential, mV -600
-210
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1140
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
84
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 18 to 50
17
Strength to Weight: Bending, points 25 to 49
17
Thermal Diffusivity, mm2/s 46
8.1
Thermal Shock Resistance, points 8.6 to 24
16

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0.1 to 0.3
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
11.5 to 14.5
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
82.5 to 88.4
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0