MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. ASTM A372 Grade H Steel

2024 aluminum belongs to the aluminum alloys classification, while ASTM A372 grade H steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is ASTM A372 grade H steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 16
20 to 22
Fatigue Strength, MPa 90 to 180
310 to 380
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 320
410 to 570
Tensile Strength: Ultimate (UTS), MPa 200 to 540
650 to 910
Tensile Strength: Yield (Proof), MPa 100 to 490
430 to 550

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 500
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
45
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.3
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1140
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
500 to 810
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 50
23 to 32
Strength to Weight: Bending, points 25 to 49
21 to 27
Thermal Diffusivity, mm2/s 46
12
Thermal Shock Resistance, points 8.6 to 24
19 to 27

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0 to 0.1
0.4 to 0.65
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
97.3 to 98.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.75 to 1.1
Molybdenum (Mo), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants