MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. EN 1.3558 Steel

2024 aluminum belongs to the aluminum alloys classification, while EN 1.3558 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is EN 1.3558 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 200 to 540
770

Thermal Properties

Latent Heat of Fusion, J/g 390
240
Maximum Temperature: Mechanical, °C 200
490
Melting Completion (Liquidus), °C 640
1810
Melting Onset (Solidus), °C 500
1760
Specific Heat Capacity, J/kg-K 880
410
Thermal Conductivity, W/m-K 120
20
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
13
Electrical Conductivity: Equal Weight (Specific), % IACS 90
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
45
Density, g/cm3 3.0
9.3
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
90

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 46
21
Strength to Weight: Axial, points 18 to 50
23
Strength to Weight: Bending, points 25 to 49
20
Thermal Diffusivity, mm2/s 46
5.3
Thermal Shock Resistance, points 8.6 to 24
22

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0.7 to 0.8
Chromium (Cr), % 0 to 0.1
3.9 to 4.3
Copper (Cu), % 3.8 to 4.9
0 to 0.3
Iron (Fe), % 0 to 0.5
73.7 to 77.6
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.4
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
17.5 to 19
Vanadium (V), % 0
1.0 to 1.3
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0