MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. EN 1.4962 Stainless Steel

2024 aluminum belongs to the aluminum alloys classification, while EN 1.4962 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is EN 1.4962 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 16
22 to 34
Fatigue Strength, MPa 90 to 180
210 to 330
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 130 to 320
420 to 440
Tensile Strength: Ultimate (UTS), MPa 200 to 540
630 to 690
Tensile Strength: Yield (Proof), MPa 100 to 490
260 to 490

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 200
910
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 500
1440
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
4.1
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1140
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
140 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
170 to 610
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 50
21 to 24
Strength to Weight: Bending, points 25 to 49
20 to 21
Thermal Diffusivity, mm2/s 46
3.7
Thermal Shock Resistance, points 8.6 to 24
14 to 16

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0
0.070 to 0.15
Chromium (Cr), % 0 to 0.1
15.5 to 17.5
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
62.1 to 69
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0.4 to 0.7
Tungsten (W), % 0
2.5 to 3.0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0