MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. EN 1.7729 Steel

2024 aluminum belongs to the aluminum alloys classification, while EN 1.7729 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 16
17
Fatigue Strength, MPa 90 to 180
500
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 130 to 320
560
Tensile Strength: Ultimate (UTS), MPa 200 to 540
910
Tensile Strength: Yield (Proof), MPa 100 to 490
750

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 500
1430
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 90
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.8
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.3
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1140
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
150
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
1500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 50
32
Strength to Weight: Bending, points 25 to 49
27
Thermal Diffusivity, mm2/s 46
11
Thermal Shock Resistance, points 8.6 to 24
27

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0 to 0.1
0.9 to 1.2
Copper (Cu), % 3.8 to 4.9
0 to 0.2
Iron (Fe), % 0 to 0.5
94.8 to 97
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.35 to 0.75
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.15
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0