MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. EN AC-43200 Aluminum

Both 2024 aluminum and EN AC-43200 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 4.0 to 16
1.1
Fatigue Strength, MPa 90 to 180
67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 200 to 540
190 to 260
Tensile Strength: Yield (Proof), MPa 100 to 490
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 390
540
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 500
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
34
Electrical Conductivity: Equal Weight (Specific), % IACS 90
120

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 3.0
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
66 to 330
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
54
Strength to Weight: Axial, points 18 to 50
20 to 28
Strength to Weight: Bending, points 25 to 49
28 to 35
Thermal Diffusivity, mm2/s 46
59
Thermal Shock Resistance, points 8.6 to 24
8.8 to 12

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
86.1 to 90.8
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
0 to 0.35
Iron (Fe), % 0 to 0.5
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 1.2 to 1.8
0.2 to 0.45
Manganese (Mn), % 0.3 to 0.9
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.5
9.0 to 11
Titanium (Ti), % 0 to 0.15
0 to 0.2
Zinc (Zn), % 0 to 0.25
0 to 0.35
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.15

Comparable Variants