MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. CC330G Bronze

2024 aluminum belongs to the aluminum alloys classification, while CC330G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.0 to 16
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 200 to 540
530
Tensile Strength: Yield (Proof), MPa 100 to 490
190

Thermal Properties

Latent Heat of Fusion, J/g 390
230
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 640
1050
Melting Onset (Solidus), °C 500
1000
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 120
62
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
14
Electrical Conductivity: Equal Weight (Specific), % IACS 90
15

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.3
3.2
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
82
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
170
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 18 to 50
18
Strength to Weight: Bending, points 25 to 49
17
Thermal Diffusivity, mm2/s 46
17
Thermal Shock Resistance, points 8.6 to 24
19

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
8.0 to 10.5
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
87 to 92
Iron (Fe), % 0 to 0.5
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Nickel (Ni), % 0
0 to 1.0
Silicon (Si), % 0 to 0.5
0 to 0.2
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 0.5
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0