MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. CC752S Brass

2024 aluminum belongs to the aluminum alloys classification, while CC752S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is CC752S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 4.0 to 16
8.4
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 200 to 540
350
Tensile Strength: Yield (Proof), MPa 100 to 490
190

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 640
840
Melting Onset (Solidus), °C 500
800
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 120
110
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
25
Electrical Conductivity: Equal Weight (Specific), % IACS 90
28

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
25
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
180
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 18 to 50
12
Strength to Weight: Bending, points 25 to 49
13
Thermal Diffusivity, mm2/s 46
35
Thermal Shock Resistance, points 8.6 to 24
12

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0.3 to 0.7
Antimony (Sb), % 0
0 to 0.14
Arsenic (As), % 0
0.040 to 0.14
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
61.5 to 64.5
Iron (Fe), % 0 to 0.5
0 to 0.3
Lead (Pb), % 0
1.5 to 2.2
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0 to 0.020
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
31.5 to 36.7
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0