MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. CC755S Brass

2024 aluminum belongs to the aluminum alloys classification, while CC755S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 4.0 to 16
9.5
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
40
Tensile Strength: Ultimate (UTS), MPa 200 to 540
390
Tensile Strength: Yield (Proof), MPa 100 to 490
250

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 640
820
Melting Onset (Solidus), °C 500
780
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 90
30

Otherwise Unclassified Properties

Base Metal Price, % relative 11
23
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1140
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
33
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
290
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 18 to 50
14
Strength to Weight: Bending, points 25 to 49
15
Thermal Diffusivity, mm2/s 46
38
Thermal Shock Resistance, points 8.6 to 24
13

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0.4 to 0.7
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
59.5 to 61
Iron (Fe), % 0 to 0.5
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.050
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.5
0 to 0.050
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
35.8 to 38.9
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0