MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. Grade 705C Zirconium

2024 aluminum belongs to the aluminum alloys classification, while grade 705C zirconium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is grade 705C zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
98
Elongation at Break, % 4.0 to 16
13
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
36
Tensile Strength: Ultimate (UTS), MPa 200 to 540
540
Tensile Strength: Yield (Proof), MPa 100 to 490
390

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Specific Heat Capacity, J/kg-K 880
270
Thermal Conductivity, W/m-K 120
18
Thermal Expansion, µm/m-K 23
5.7

Otherwise Unclassified Properties

Density, g/cm3 3.0
6.7
Embodied Water, L/kg 1140
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
66
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
790
Stiffness to Weight: Axial, points 13
8.1
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 18 to 50
22
Strength to Weight: Bending, points 25 to 49
22
Thermal Diffusivity, mm2/s 46
9.9
Thermal Shock Resistance, points 8.6 to 24
69

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.5
0 to 0.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0
Niobium (Nb), % 0
2.0 to 3.0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
91.9 to 98
Residuals, % 0 to 0.15
0