MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. C70400 Copper-nickel

2024 aluminum belongs to the aluminum alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
45
Tensile Strength: Ultimate (UTS), MPa 200 to 540
300 to 310
Tensile Strength: Yield (Proof), MPa 100 to 490
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
210
Maximum Temperature: Mechanical, °C 200
210
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 500
1060
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 120
64
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
14
Electrical Conductivity: Equal Weight (Specific), % IACS 90
14

Otherwise Unclassified Properties

Base Metal Price, % relative 11
32
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
38 to 220
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 18 to 50
9.3 to 9.8
Strength to Weight: Bending, points 25 to 49
11 to 12
Thermal Diffusivity, mm2/s 46
18
Thermal Shock Resistance, points 8.6 to 24
10 to 11

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
89.8 to 93.6
Iron (Fe), % 0 to 0.5
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.3 to 0.8
Nickel (Ni), % 0
4.8 to 6.2
Silicon (Si), % 0 to 0.5
0
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5