MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. C96800 Copper

2024 aluminum belongs to the aluminum alloys classification, while C96800 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is C96800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
120
Elongation at Break, % 4.0 to 16
3.4
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 27
46
Tensile Strength: Ultimate (UTS), MPa 200 to 540
1010
Tensile Strength: Yield (Proof), MPa 100 to 490
860

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 640
1120
Melting Onset (Solidus), °C 500
1060
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 120
52
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
10
Electrical Conductivity: Equal Weight (Specific), % IACS 90
10

Otherwise Unclassified Properties

Base Metal Price, % relative 11
34
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.3
3.4
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
33
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
3000
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 18 to 50
32
Strength to Weight: Bending, points 25 to 49
25
Thermal Diffusivity, mm2/s 46
15
Thermal Shock Resistance, points 8.6 to 24
35

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.8 to 4.9
87.1 to 90.5
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0
0 to 0.0025
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0 to 1.0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0
0 to 0.5