MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. N06210 Nickel

2024 aluminum belongs to the aluminum alloys classification, while N06210 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is N06210 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 4.0 to 16
51
Fatigue Strength, MPa 90 to 180
320
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
85
Shear Strength, MPa 130 to 320
560
Tensile Strength: Ultimate (UTS), MPa 200 to 540
780
Tensile Strength: Yield (Proof), MPa 100 to 490
350

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 640
1570
Melting Onset (Solidus), °C 500
1510
Specific Heat Capacity, J/kg-K 880
420
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
85
Density, g/cm3 3.0
9.0
Embodied Carbon, kg CO2/kg material 8.3
17
Embodied Energy, MJ/kg 150
250
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
320
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
22
Strength to Weight: Axial, points 18 to 50
24
Strength to Weight: Bending, points 25 to 49
21
Thermal Shock Resistance, points 8.6 to 24
22

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.1
18 to 20
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
0 to 1.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 0.5
Molybdenum (Mo), % 0
18 to 20
Nickel (Ni), % 0
54.8 to 62.5
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Tantalum (Ta), % 0
1.5 to 2.2
Titanium (Ti), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0