MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. R30012 Cobalt

2024 aluminum belongs to the aluminum alloys classification, while R30012 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is R30012 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 4.0 to 16
1.0
Fatigue Strength, MPa 90 to 180
320
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
86
Tensile Strength: Ultimate (UTS), MPa 200 to 540
830
Tensile Strength: Yield (Proof), MPa 100 to 490
650

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Melting Completion (Liquidus), °C 640
1470
Melting Onset (Solidus), °C 500
1280
Specific Heat Capacity, J/kg-K 880
440
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 90
1.8

Otherwise Unclassified Properties

Density, g/cm3 3.0
8.8
Embodied Carbon, kg CO2/kg material 8.3
8.3
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
480

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
7.7
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
960
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 18 to 50
26
Strength to Weight: Bending, points 25 to 49
22
Thermal Diffusivity, mm2/s 46
3.8
Thermal Shock Resistance, points 8.6 to 24
23

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
1.4 to 2.0
Chromium (Cr), % 0 to 0.1
27 to 32
Cobalt (Co), % 0
47.5 to 64.1
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
0 to 3.0
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 3.0
Silicon (Si), % 0 to 0.5
0 to 2.0
Titanium (Ti), % 0 to 0.15
0
Tungsten (W), % 0
7.5 to 9.5
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0