MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. S20161 Stainless Steel

2024 aluminum belongs to the aluminum alloys classification, while S20161 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is S20161 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.0 to 16
46
Fatigue Strength, MPa 90 to 180
360
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 130 to 320
690
Tensile Strength: Ultimate (UTS), MPa 200 to 540
980
Tensile Strength: Yield (Proof), MPa 100 to 490
390

Thermal Properties

Latent Heat of Fusion, J/g 390
330
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 500
1330
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 90
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.5
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1140
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
360
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 18 to 50
36
Strength to Weight: Bending, points 25 to 49
29
Thermal Diffusivity, mm2/s 46
4.0
Thermal Shock Resistance, points 8.6 to 24
22

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
15 to 18
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
65.6 to 73.9
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
4.0 to 6.0
Nickel (Ni), % 0
4.0 to 6.0
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.5
3.0 to 4.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0