MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. S28200 Stainless Steel

2024 aluminum belongs to the aluminum alloys classification, while S28200 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is S28200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 16
45
Fatigue Strength, MPa 90 to 180
430
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 130 to 320
610
Tensile Strength: Ultimate (UTS), MPa 200 to 540
870
Tensile Strength: Yield (Proof), MPa 100 to 490
460

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 640
1380
Melting Onset (Solidus), °C 500
1330
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 23
18

Otherwise Unclassified Properties

Base Metal Price, % relative 11
12
Density, g/cm3 3.0
7.6
Embodied Carbon, kg CO2/kg material 8.3
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1140
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
330
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
540
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
26
Strength to Weight: Axial, points 18 to 50
32
Strength to Weight: Bending, points 25 to 49
27
Thermal Shock Resistance, points 8.6 to 24
17

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.1
17 to 19
Copper (Cu), % 3.8 to 4.9
0.75 to 1.3
Iron (Fe), % 0 to 0.5
57.7 to 64.1
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
17 to 19
Molybdenum (Mo), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0