MakeItFrom.com
Menu (ESC)

2024 Aluminum vs. S33228 Stainless Steel

2024 aluminum belongs to the aluminum alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 2024 aluminum and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.0 to 16
34
Fatigue Strength, MPa 90 to 180
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 130 to 320
380
Tensile Strength: Ultimate (UTS), MPa 200 to 540
570
Tensile Strength: Yield (Proof), MPa 100 to 490
210

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 500
1360
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1140
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 68
150
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 1680
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 18 to 50
20
Strength to Weight: Bending, points 25 to 49
19
Thermal Shock Resistance, points 8.6 to 24
13

Alloy Composition

Aluminum (Al), % 90.7 to 94.7
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 3.8 to 4.9
0
Iron (Fe), % 0 to 0.5
36.5 to 42.3
Magnesium (Mg), % 1.2 to 1.8
0
Manganese (Mn), % 0.3 to 0.9
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.25
0
Zirconium (Zr), % 0 to 0.2
0
Residuals, % 0 to 0.15
0