MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. 5042 Aluminum

Both 2025 aluminum and 5042 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is 5042 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
68
Elongation at Break, % 15
1.1 to 3.4
Fatigue Strength, MPa 130
97 to 120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 240
200
Tensile Strength: Ultimate (UTS), MPa 400
340 to 360
Tensile Strength: Yield (Proof), MPa 260
270 to 310

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 190
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 520
570
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 7.9
8.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
3.6 to 12
Resilience: Unit (Modulus of Resilience), kJ/m3 450
550 to 720
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
50
Strength to Weight: Axial, points 37
35 to 37
Strength to Weight: Bending, points 40
40 to 42
Thermal Diffusivity, mm2/s 58
53
Thermal Shock Resistance, points 18
15 to 16

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
94.2 to 96.8
Chromium (Cr), % 0 to 0.1
0 to 0.1
Copper (Cu), % 3.9 to 5.0
0 to 0.15
Iron (Fe), % 0 to 1.0
0 to 0.35
Magnesium (Mg), % 0 to 0.050
3.0 to 4.0
Manganese (Mn), % 0.4 to 1.2
0.2 to 0.5
Silicon (Si), % 0.5 to 1.2
0 to 0.2
Titanium (Ti), % 0 to 0.15
0 to 0.1
Zinc (Zn), % 0 to 0.25
0 to 0.25
Residuals, % 0
0 to 0.15