MakeItFrom.com
Menu (ESC)

2025 Aluminum vs. 7005 Aluminum

Both 2025 aluminum and 7005 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2025 aluminum and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
70
Elongation at Break, % 15
10 to 20
Fatigue Strength, MPa 130
100 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 240
120 to 230
Tensile Strength: Ultimate (UTS), MPa 400
200 to 400
Tensile Strength: Yield (Proof), MPa 260
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
380
Maximum Temperature: Mechanical, °C 190
200
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 520
610
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
140 to 170
Thermal Expansion, µm/m-K 23
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
35 to 43
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110 to 130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.9
Embodied Carbon, kg CO2/kg material 7.9
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1130
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 55
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 450
65 to 850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
47
Strength to Weight: Axial, points 37
19 to 38
Strength to Weight: Bending, points 40
26 to 41
Thermal Diffusivity, mm2/s 58
54 to 65
Thermal Shock Resistance, points 18
8.7 to 18

Alloy Composition

Aluminum (Al), % 90.9 to 95.2
91 to 94.7
Chromium (Cr), % 0 to 0.1
0.060 to 0.2
Copper (Cu), % 3.9 to 5.0
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0 to 0.050
1.0 to 1.8
Manganese (Mn), % 0.4 to 1.2
0.2 to 0.7
Silicon (Si), % 0.5 to 1.2
0 to 0.35
Titanium (Ti), % 0 to 0.15
0.010 to 0.060
Zinc (Zn), % 0 to 0.25
4.0 to 5.0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0
0 to 0.15